Evolution as a self-organized critical phenomenon

We present a simple mathematical model of biological macroevolution. The model describes an ecology of adapting, interacting species. The environment of any given species is affected by other evolving species; hence, it is not constant in time. The ecology as a whole evolves to a “self-organized critical” state where periods of stasis alternate with avalanches of causally connected evolutionary changes. This characteristic behavior of natural history, known as “punctuated equilibrium,” thus finds a theoretical explanation as a self-organized critical phenomenon. The evolutionary behavior of single species is intermittent. Also, large bursts of apparently simultaneous evolutionary activity require no external cause. Extinctions of all sizes, including mass extinctions, may be a simple consequence of ecosystem dynamics. Our results are compared with data from the fossil record.


About Giorgio Bertini

Research Professor. Founder Director at Learning Change Project - Research on society, culture, art, neuroscience, cognition, critical thinking, intelligence, creativity, autopoiesis, self-organization, rhizomes, complexity, systems, networks, leadership, sustainability, thinkers, futures ++
This entry was posted in Evolution, Self-organization and tagged , . Bookmark the permalink.