Learning Sciences of Change

… for your learning: +350 posts

Archive for the ‘Creativity’ Category

We Feel, Therefore We Learn: The Relevance of Affective and Social Neuroscience to Education

with one comment

Recent advances in neuroscience are highlighting connections between emotion, social functioning, and decision making that have the potential to revolutionize our understanding of the role of affect in education. In particular, the neurobiological evidence suggests that the aspects of cognition that we recruit most  heavily in schools, namely learning, attention, memory, decision making, and social functioning, are both profoundly affected by and subsumed within the processes of emotion; we call these aspects emotional thought.  Moreover, the evidence from brain-damaged patients suggests the hypothesis that emotion-related processes are required for skills and knowledge to be transferred from the structured school environment to real-world decision making because they provide an emotional rudder  to guide judgment and action. Taken together, the evidence we present sketches an account of the neurobiological underpinnings of morality, creativity, and culture, all topics of critical importance to education. Our hope is that a better understanding of the neurobiological relationships between these constructs will provide a new basis for innovation in the design of learning environments.

Read

Read also: What is Wisdom and how is it Learned?

The Heart-Brain Connection: The Neuroscience of Social, Emotional, and Academic Learning

Written by learningchange

04/11/2013 at 12:30

The Cognitive Neuroscience of Creativity: A Critical Review

leave a comment »

Cognitive neuroscience studies of creativity have appeared with increasing frequently in recent years. Yet to date, no comprehensive and critical review of these studies has yet been published. The first part of this article presents a quick overview of the 3 primary methodologies used by cognitive neuroscientists: electroencephalography (EEG), positron emission tomography (PET), and functional magnetic resonance imaging (fMRI). The second part provides a comprehensive review of cognitive neuroscience studies of creativity-related cognitive processes. The third part critically examines these studies; the goal is to be extremely clear about exactly what interpretations can appropriately be made of these studies. The conclusion provides recommendations for future research collaborations between creativity researchers and cognitive neuroscientists.

Read

Written by learningchange

13/07/2012 at 10:55

Explaining Creativity: The Science of Human Innovation

leave a comment »

Explaining Creativity is an accessible introduction to the latest scientific research on creativity. The book summarizes and integrates a broad range of research in psychology and related scientific fields. In the last 40 years, psychologists, anthropologists, and sociologists have devoted increased attention to creativity; we now know more about creativity than at any point in history. Explaining Creativity considers not only arts like painting and writing, but also science, stage performance, business innovation, and creativity in everyday life.

Sawyer’s approach is interdisciplinary. In addition to examining psychological studies on creativity, he draws on anthropologists’ research on creativity in non-Western cultures, sociologists’ research on the situations, contexts, and networks of creative activity, and cognitive neuroscientists’ studies of the brain. He moves beyond the individual to consider the social and cultural contexts of creativity, including the role of collaboration in the creative process.

Read

Written by learningchange

05/06/2012 at 13:00

Posted in Creativity, Innovation

Tagged with ,

The Science of Creativity

leave a comment »

Use these empirically backed tips to capture your next big idea.

Epstein, has conducted research showing that strengthening four core skill sets leads to an increase in novel ideas: Capture your new ideas; Seek out challenging tasks; Broaden your knowledge; and, Surround yourself with interesting things and people.

Many practices that lead to better overall well-being also boost innovative thinking. For instance, creativity researchers suggest you: Sleep on it; Collaborate—in writing; Let the sunshine in; and, Get happy.

Read

Read also: Cognition, Creativity, and Behavior

Generativity Theory

Written by learningchange

01/06/2012 at 13:00

Posted in Creativity

Tagged with

Creativity in the Brain

with one comment

It has been said that creative intelligence is the ability to invent goals, projects, and plans-in other words, we might say, to invent the future.
 A reasonable assumption is that the creative process consists of the formation of new cognits (brain circuits) , that is, new network representations in the cortex. These representations result mostly from divergent thinking as opposed to convert thinking.
 Convergent thinking consists of inductive and deductive reasoning, which converge towards logical inferences and the solution of problems. Divergent thinking, on the other hand, is free of logical constraints, autonomous and to some extent free-floating, reliant on the imagination, and minimally anchored in the immediate reality. Creative cognits emerge mainly from divergent thinking ….

Read

Read also: Cortex and mind: unifying cognition

This book presents a unique synthesis of the current neuroscience of cognition by one of the world’s authorities in the field. The guiding principle to this synthesis is the tenet that the entirety of our knowledge is encoded by relations, and thus by connections, in neuronal networks of our cerebral cortex. Cognitive networks develop by experience on a base of widely dispersed modular cell assemblies representing elementary sensations and movements. As they develop cognitive networks organize themselves hierarchically by order of complexity or abstraction of their content. Because networks intersect profusely, sharing commong nodes, a neuronal assembly anywhere in the cortex can be part of many networks, and therefore many items of knowledge. All cognitive functions consist of neural transactions within and between cognitive networks. After reviewing the neurobiology and architecture of cortical networks (also named cognits), the author undertakes a systematic study of cortical dynamics in each of the major cognitive functions–perception, memory, attention, language, and intelligence….

Written by learningchange

16/12/2011 at 02:39

What Happened To Creativity In Science?

leave a comment »

Collaboration, open source data, and new types of ‘peer review’ that includes some type of crowdsourcing, is where we need to be headed. Open Access journals, such as PLoS One should be the standard, not the exception, for data sharing. There are some valiant attempts being made right now at adjusting to a new model of scientific research, specifically the addition of blogging platforms to increase science communication, but this isn’t enough, and too many of them are falling short of fully embracing a digital, open-sharing network model. Much of what I see is the same old paper model being squeezed into a digital platform; we need to scrap the old model altogether and come up with something completely different in order for it to work.

What are our options? Radical openness, for one. I mean REAL openness, inviting everyone in, not just a select few. I know, there will be validity issues to be addressed. Challenging? You betcha. But that shouldn’t stop it.

I know we can do this—we all just need to work together and embrace true collaboration. There is too much secretive hoarding of ideas, paranoia of being “scooped”, and competition in the race to publish. We can solve so many more of the world’s problems through collaboration— ideas sparking off each other, shining insight and gaining perspective in ways that are only possible when we pool our minds together. We need to put scientific discovery ahead of prestige and money if we are ever to break out of this information and creativity crisis. I know the brain power is there—let’s give it a platform in which to emerge, grow, and flourish.

Read

Written by learningchange

20/11/2011 at 03:38

Posted in Creativity, Science

Tagged with ,

Brain Imaging Studies of Intelligence and Creativity – What Is the Picture for Education?

leave a comment »

Read

The goal of this article is to summarize current brain research on intelligence and creativity that may be relevant to education in the near future. Five issues are addressed: (a) Why is there a neuroscience interest in intelligence? (b) Can intelligence be located in the brain? (c) Why are some brains smarter than others? (d) What do we know about creativity and the brain? and (e) Can information about an individual’s brain structure and function be useful to benefit his or her education? As we enter the 21st century, old controversies about measurement of intelligence are less relevant. Integrating neuroscience findings into education practices is a daunting  challenge that will require educators to reexamine old ideas and acquire fundamental backgrounds in new areas.

Written by learningchange

24/05/2011 at 03:12

Creativity, Problem Solving and Innovative Science: Insights from History, Cognitive Psychology and Neuroscience

leave a comment »

Read

This paper examines the intersection between creativity, problem solving, cognitive psychology and neuroscience in a discussion surrounding the genesis of new ideas and innovative science. Three creative activities are considered. These are (a) the interaction between visual-spatial and analytical or verbal reasoning, (b) attending to feeling in listening to the ‘self’, and (c) the interaction between conscious and non-conscious reasoning. Evidence for the importance of each of these activities to the creative process is drawn from (a) historical and introspective accounts of novel problem solving by noted scientists and mathematicians; (b) cognitive psychology and neuroscience; and (c) a recent empirical study of novel mathematics problem solving. An explanation of these activities is given in terms of cognitive neuroscience. A conceptual framework connecting each  of these activities is presented and the implications for learning and teaching considered.

Written by learningchange

16/05/2011 at 15:40

The cognitive neuroscience of creativity

leave a comment »

Read

This article outlines a framework of creativity based on functional neuroanatomy. Recent advances in the field of cognitive neuroscience have identified distinct brain circuits that are involved in specific higher brain functions. To date, these findings have not been applied to research on creativity. It is proposed that there are four basic types of creative insights, each mediated by a distinctive neural circuit. By definition, creative insights occur in consciousness. Given the view that the working memory buffer of the prefrontal cortex holds the content of  consciousness, each of the four distinctive neural loops terminates there. When creativity is the result of deliberate control, as opposed to spontaneous generation, the prefrontal cortex also instigates the creative process. Both processing modes, deliberate and spontaneous, can guide neural computation in structures that contribute emotional content and in structures that provide cognitive analysis, yielding the four basic types of creativity. Supportive evidence from psychological, cognitive, and neuroscientific studies is presented and integrated in this article. The new theoretical framework systematizes the interaction between knowledge and creative thinking, and how the nature of this relationship changes as a function of domain and age. Implications for the arts and sciences are briefly discussed.

Written by learningchange

16/05/2011 at 15:34

Fostering creative thinking – Co-constructed insights from neuroscience and education

with one comment

Read

  • Although every creative act contains elements of spontaneity, teachers can play a critical role in fostering creative thinking processes through use of environment and strategy.
  • No single part of our brain is responsible for creativity. Some regions linked to producing divergent associations, of the type needed for creativity, appear usually located in the right hemisphere. However, creativity is a complex thought process that calls on many different brain regions in both hemispheres. Left-brain/right-brain theories of learning are not based on credible science and are unhelpful in understanding creativity, especially when used to categorise individuals.
  • Creativity appears to require movement between two different modes of thinking: generative and analytical.
  • Cognitive fixation occurs when we become unable to move beyond an idea or set of ideas. It can be thought of as being stuck in analytical mode. However, in normal circumstances, we can monitor and, to some extent, regulate which mode we are using. In this sense, creative thinking appears amenable to metacognition.

Written by learningchange

16/05/2011 at 02:34