Learning Sciences of Change

Learning Change Project: 8 Blogs, +7300 Readings

Archive for the ‘Science’ Category

What Science Knows: And How It Knows It

leave a comment »

To scientists, the tsunami of relativism, scepticism, and postmodernism that washed through the humanities in the twentieth century was all water off a duck’s back. Science remained committed to objectivity and continued to deliver remarkable discoveries and improvements in technology. In What Science Knows, the Australian philosopher and mathematician James Franklin explains in captivating and straightforward prose how science works its magic. He begins with an account of the nature of evidence, where science imitates but extends commonsense and legal reasoning in basing conclusions solidly on inductive reasoning from facts. After a brief survey of the furniture of the world as science sees it—including causes, laws, dispositions and force fields as well as material things—Franklin describes colorful examples of discoveries in the natural, mathematical, and social sciences and the reasons for believing them. He examines the limits of science, giving special attention both to mysteries that may be solved by science, such as the origin of life, and those that may in principle be beyond the reach of science, such as the meaning of ethics. What Science Knows will appeal to anyone who wants a sound, readable, and well-paced introduction to the intellectual edifice that is science. On the other hand it will not please the enemies of science, whose willful misunderstandings of scientific method and the relation of evidence to conclusions Franklin mercilessly exposes.

Read

Read also: The Cognitive Science of Science: Explanation, Discovery, and Conceptual Change

Written by Giorgio Bertini

June 18, 2015 at 12:29 pm

The Sociology of Scientific Work – The Relationship between Science and Society

leave a comment »

In science and engineering faculties just about everywhere, social science training courses have been introduced. Sometimes, the temptation is to believe that a dash of epistemology will be enough to get across to young scientists exactly what science in action is all about. Others believe that a dose of ethics is what they need to be able to deal with society related problems. Of course, such beliefs are by and large illusory. Obviously, some kind of philosophical training has its worth, but what our young experts also need is scientific training that will allow them to get to grips with the real socio-scientific dynamics. They need to be able to understand the dynamics behind the creation of knowledge and innovation, but they also need to be able to act on these, both as professional actors and as responsible citizens. This book provides analysis frameworks to help students and scholars to decode the stakes underlying and surrounding science and technology. It looks at different ways in which science and society interrelate (for example, the emergence of scientific disciplines, the dynamics behind innovation, technical democracy and so on), and at the main social mechanisms that drive and sustain science (institutions, organisations, exchanges between researchers, building of content, concrete practices and so on).

Read

Written by Giorgio Bertini

June 3, 2015 at 1:50 pm

Theory and Reality – an Introduction to the Philosophy of Science

leave a comment »

How does science work? Does it tell us what the world is “really” like? What makes it different from other ways of understanding the universe? In Theory and Reality, Peter Godfrey-Smith addresses these questions by taking the reader on a grand tour of one hundred years of debate about science. The result is a completely accessible introduction to the main themes of the philosophy of science. Intended for undergraduates and general readers with no prior background in philosophy, Theory and Reality covers logical positivism; the problems of induction and confirmation; Karl Popper’s theory of science; Thomas Kuhn and “scientific revolutions“; the views of Imre Lakatos, Larry Laudan, and Paul Feyerabend; and challenges to the field from sociology of science, feminism, and science studies. The book then looks in more detail at some specific problems and theories, including scientific realism, the theory-ladeness of observation, scientific explanation, and Bayesianism. Finally, Godfrey-Smith defends a form of philosophical naturalism as the best way to solve the main problems in the field. Throughout the text he points out connections between philosophical debates and wider discussions about science in recent decades, such as the infamous “science wars.” Examples and asides engage the beginning student; a glossary of terms explains key concepts; and suggestions for further reading are included at the end of each chapter. However, this is a textbook that doesn’t feel like a textbook because it captures the historical drama of changes in how science has been conceived over the last one hundred years. Like no other text in this field, Theory and Reality combines a survey of recent history of the philosophy of science with current key debates in language that any beginning scholar or critical reader can follow.

Read

Written by Giorgio Bertini

June 2, 2015 at 1:37 pm

Einstein and the Development of Twentieth-Century Philosophy of Science

leave a comment »

The development of Einstein’s philosophy and the development of logical empiricism were both driven in crucial ways by the quest for an empiricism that could defend the empirical integrity of general relativity in the face of neo-Kantian critiques. But logical empiricism was more than a philosophy of relativity theory, and Einstein’s philosophy of science was more than an answer to Kant. A fuller account of Einstein’s philosophy of science would have to include discussion of his belief in simplicity as a guide to truth, especially in areas of physics comparatively far removed from extensive and direct contact with experiment, as in his own long search for a unified field theory. A fuller account would also investigate Einstein’s largely original and, I think, quite profound distinction between “principle theories” and “constructive theories,” the former constituted of mid-level, empirically well-grounded generalizations like the light principle and the relativity principle, which, by constraining the search for constructive models, often facilitate progress in science, as Einstein thought was the case in his discovery of special relativity. And a fuller account would examine Einstein’s appropriation of what Joseph Petzoldt dubbed “the law of univocalness”, in effect the requirement that theories determine for themselves unique models of the phenomena they aim to describe, for this idea was central to Einstein’s thinking about a permissible space-time event ontology, his solution of the “hole argument” via the “pointcoincidence argument” in the genesis of general relativity, and his more general attitude toward physical reality and objectivity. And partly through its influence on Einstein, this idea of Petzoldt’s also played a significant role in the history of logical empiricism, especially in the development of Carnap’s thinking.

Read

Written by Giorgio Bertini

June 2, 2015 at 12:23 pm

The New Science of Mind and the Future of Knowledge

leave a comment »

Understanding mental processes in biological terms makes available insights from the new science of the mind to explore connections between philosophy, psychology, the social sciences, the humanities, and studies of disorders of mind. In this perspective we examine how these linkages might be forged and how the new science of the mind might serve as an inspiration for further exploration.

We have seen in this essay four specific areas in which the new science of the mind is particularly well positioned to enrich our understanding of other areas of knowledge. We have seen its potential as an intellectual force and a font of new knowledge that is likely to bring about a new dialog between the natural sciences, the social sciences, and the humanities. This dialog could help us understand better the mechanisms in the brain that make creativity possible, whether in art, the sciences, or the humanities, and thus open up a new dimension in intellectual history. In addition, an enriched understanding of the brain is needed to guide public policy. Particularly promising areas are the cognitive and emotional development of infants, the improvement of teaching methods, and the evaluation of decisions. But perhaps the greatest consequence for public policy is the impact that brain science and its engagement with other disciplines is likely to have on the structure of the social universe as we know it.

Read

Written by Giorgio Bertini

July 6, 2014 at 10:21 pm

The Science of the Individual

leave a comment »

Human behavior is remarkably variable. It changes systematically over time, and it fluctuates moment-to-moment depending on the immediate context. If this kind of individual variability is ignored or marginalized, it acts asnoise disguising the dynamic nature of individual behavior and growth, and it will often mislead researchers. In contrast, starting with a focus on individual variability, rather than statistical averages, leads to new, elegant explanations for the richness of behavior, including models and methods for analyzing variability over time and across contexts. These concepts and tools help more closely align theory, research, and practice, and give us the best opportunity to develop usable knowledge about the complex and variable ways that individuals behave, learn, and grow.

Our goal is to establish a science of the individual, grounded in dynamic systems, and focused on the analysis of  individual variability. Our argument is that individuals behave, learn, and develop in distinctive ways, showing patterns of variability that are not captured by models based on statistical averages. As such, any meaningful attempt to develop a science of the individual necessarily begins with an account of the individual variability that is pervasive in all aspects of behavior, and at all levels of analysis. Using examples from fields as diverse as education and medicine, we show how starting with individual variability, not statistical averages, helped researchers discover two sources of ordered variability — pathways and contexts — that have implications for theory, research, and practice in multiple disciplines. We conclude by discussing three broad challenges—data, models, and the nature of science—that must be addressed to ensure that the science of the individual reaches its full potential.

Read

Written by Giorgio Bertini

July 1, 2014 at 11:52 am

Posted in Individual, Science

Tagged with ,

Useful Search Engines for Science

leave a comment »

Students of the past spent most of their academic time in the library, pouring over encyclopedias, and sifting through pages of data. It’s easy to get lost in a text-heavy reference book, amidst numbers and figures; this is especially true for science majors, whose art and skill revolves around specific numbers and very precise information. Fortunately for today’s scientist, much of the information that was once found only inside the walls of a library is now available online. These awesome science search engines will help you find what exactly what you’re looking for, as well as remind you how much fun research can really be.

Read

Written by Giorgio Bertini

May 20, 2014 at 10:02 am

Posted in Research, Science, Search

Tagged with , ,

Convergence – facilitating Transdisciplinary Integration of Life Sciences, Physical Sciences, Engineering, and Beyond

leave a comment »

Convergence is an approach to problem solving that cuts across disciplinary boundaries. It integrates knowledge, tools, and ways of thinking from life and health sciences, physical, mathematical, and computational sciences, engineering disciplines, and beyond to form a comprehensive synthetic framework for tackling scientific and societal challenges that exist at the interfaces of multiple fields. By merging these diverse areas of expertise in a network of partnerships, convergence stimulates innovation from basic science discovery to translational application. It provides fertile ground for new collaborations that engage stakeholders and partners not only from academia, but also from national laboratories, industry, clinical settings, and funding bodies. The concept of convergence as represented in this report is thus meant to capture two closely relatedbut distinct properties: the convergence of expertise necessary to address a set of research problems, and the formation of the web of partnerships involved in supporting such scientific investigations and enabling the resulting advances to be translated into new forms of innovation and new products.

Many institutions are interested in how they can better facilitate convergent research. Despite the presence of established models, however, cultural and institutional roadblocks can still slow the creation of self-sustaining ecosystems of convergence. Institutions often have little guidance on how to establish effective programs, what challenges they might encounter, and what strategies other organizations have used to solve the problems that arise. The present study was undertaken to address this gap. It aims to explore mechanisms used by organizations and programs to support convergent research and provide informed guidance for the community.

Read

Written by Giorgio Bertini

May 13, 2014 at 5:34 pm

Mapping social responsibility in science

leave a comment »

The vast majority of scientists want their research to be of use to society. They just disagree on how much society should interfere with what it is they study, and how they carry out their research,” says Glerup, who is working on a PhD project on scientific sociology at the Copenhagen Business School. Her research has shown that there are two different ideologies when it comes to research and public utility in the scientific community:

  • An ideology of internal control – the researchers know how the world works, so they are in a good position to find out how it should be. Therefore, they are ideally placed to judge about the public utility of their research.
  • An ideology of external control – social actors, such as politicians and organisations, know what is best for society, and this makes them ideally placed to determine what research should be done and how.

Read

Written by Giorgio Bertini

April 16, 2014 at 1:33 pm

Quelles Synergies Sciences-Société pour Demain?

leave a comment »

Parce qu’elles visent à placer la recherche au cœur des enjeux les plus contemporains, les Rencontres Université–Société sont articulées autour de quatre thèmes faisant écho à la demande sociale : 1) Bien-être, handicap et santé; 2) Développement et durabilité; 3)  Qualité de vie et travail; 4) Art, culture, société. Universitaires, acteurs socio-économiques et culturels, grands témoins et médias ont proposé une restitution des travaux réalisés dans le cadre des ateliers et ont engagé la discussion avec le public à travers 4 tables rondes et un débat final.

Écouter

Written by Giorgio Bertini

April 14, 2014 at 8:40 pm

Posted in Science, Society

Tagged with ,

Follow

Get every new post delivered to your Inbox.

Join 86 other followers